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I INTRODUCTION AND SUMMARY

Stanford Research Institute (SRI) is currently making lidar (laser

radar) observations of the variability of particulates in the strato-

sphere between 10 km (33,000 ft) and 30 km (98,000 ft). These observa-

tions are part of a lidar program supported by the CIAP Office of the

Department of Transportation. The goal of CIAP is the assessment of the

impact of climatic changes that may result from perturbation of the

upper atmosphere by the propulsion effluents of a world high-altitude

aircraft fleet as projected to 1990.

The general objective of the SRI laser radar experiment is to provide

information on the distribution of particulate material in the natural

(unperturbed) stratosphere. The specific objectives are to conduct a

series of periodic nighttime measurements of stratospheric aerosols in

the vicinity of Menlo Park, California, by the use of a ground-based lidar

containing both a pulsed ruby laser and a tunable dye laser. These

measurements will be conducted over an 18-month period and will consist

of approximately 100 instrumented observational hours spread throughout

the period. A series of measurements during the hours immediately after

sundown and preceding dawn will be included to ascertain the effects of

sunlight on the concentration and vertical distribution of aerosols. The

observations will also be scheduled, when possible, to coincide with air-

craft, rocket, or balloon data-gathering operations in the local area.

Data will be reduced and analyzed, and the results will continuously be

reviwed to see if any changes in the frequency of observations or of the

operating conditions are desirable.
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This semiannual report presents the results of all successful measure-

ments made since the beginning of the observation program in October 1972

through June 1973. The results of each observation are presented as

vertical profiles (with a resolution of 250 m to 500 m in altitude z) of

two quantities indicative of stratospheric aerosol content.

* The "scattering ratio," R(z), equal to the ratio of total

(molecular plus particulate) atmospheric backscattering co-

efficient to molecular backscattering coefficient.

* The aerosol backscattering coefficient, fA(z) (per meter per

steradian).

Both the scattering ratio and the aerosolbackscattering coefficient

are integrated optical quantities determined by the number, size distri-

bution, shape, and index of refraction of the aerosol particles lying

within the stratospheric volume at altitude z that is sampled by the lidar

beam. As such, they cannot be converted to unambiguous values of particle

number or mass concentration without auxiliary information on particle

size distribution, shape, index of refraction and mass density. This

auxiliary information may be obtained concurrently with the lidar measure-

ments by means of direct sampling equipment on aircraft or balloon plat-

forms. Alternatively, typical values of these auxiliary data as inferred

from a representative direct sampling program may be used to convert the

lidar data. The advantage of the lidar over the direct sampling techniques

lies of course in its ability to rapidly observe stratospheric regions of

large vertical extent, in the fact that it does not alter the quantities

that it is sampling, and in its significantly lower cost per observation.

Even without the auxiliary data or assumptions necessary to convert

them to absolute number or mass concentrations, the lidar data provide

direct information on stratospheric aerosol content. The profiles of

scattering ratio and aerosol backscattering coefficient immediately reveal
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the presence, altitude, and variability (in space and time) of strato-

spheric aerosol layers. As such, they provide a valuable input to

to modeling and other studies that attempt to describe the dynamic,

radiative, physical, and chemical processes responsible for natural and

man-made changes in the stratosphere. For example, on the basis of the

lidar observations presented in this report, the following can be

concluded:

* The level of the tropopause (12 to 15 km at Menlo Park,

California) appears to be a level of relative minimum aerosol

content.

* The presence of a layer of relative maximum aerosol content

near 20 km is evident in all the observations. The ruby lidar

data for this layer show a particulate contribution to the

atmospheric backscatter that is 10 to 15 percent of the

molecular contribution. This may be compared with particulate

contributions that were 50 to 100 percent of the molecular

contribution during 1964 and 1965 when the Agung volcanic

material was present in the stratosphere.

* The lidar data show large differences in the vertical distri-

bution of the stratospheric aerosol from one observation

period to the next. Both layered structures and vertical

decreases at constant mixing ratio are apparent.

* The time variability of particulate backscatter within a

single night also differs from one observation to another.

On 4 January 1973, the change of lidar scattering ratio

during the observation period was evidently negligible;

whereas on 15 May 1973, a significant change in scattering

profile occurred as the night progressed.

* Sequential ruby (X = 0.6943 4m) and dye (X = 0.5890 4m)

lidar observations on the same night produced scattering

ratio profiles having the same shape; however, the scatter-

ing ratios R(z) at the shorter dye wavelength were con-

sistently lower than those at the longer ruby wavelength.

This confirms that the enhanced return from the 20 to 25 km

layer is of a particulate origin rather than from an anoma-

lously dense molecular layer. Differences between the par-

ticulate backscattering coefficient fA(z) at the two wave-

lengths are nearly within the uncertainty of the measure-

ments, but the possible wavelength dependence suggested by
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this observation is consistent with size distributions for

the stratospheric aerosol that other workers have measured

and suggested.

The lidar observations reveal a slight increase in the aero-
-9

sol backscattering coefficient of the 20-km layer from 2 X 10

per meter per steradian in October 1972 to 6 X 10- 9 per meter

per steradian in May and June 1973. On the assumption that

the optical (chemical) properties, shape, and size distribu-

tion of the particulates in this layer remained constant,

the observed increase indicates that the particle number

density increased by a factor of 3.

The largest variability in particulate backscatter was observed

between 25 and 30 km. In the 25 to 27.5-km layer, the lidar-

observed aerosol backscattering coefficient showed a decrease

by a factor of 10 from December 1972 to mid-January 1973,

followed by a tenfold increase from mid-January to April.

Whether this variability was caused by a change in aerosol

number density, an influx of large particles, or a significant

change in the nature of the particulates cannot be determined

at this time. However, the decrease of backscattering in the

25 to 27.5-km layer and a smaller decrease in the 22.5 to

25.0-km layer coincide with a change in the zonal wind at

those altitudes from a westerly to an easterly direction.

Moreover, the subsequent increase in backscattering in those

layers coincides with a return of the wind direction from

easterly to westerly. This correspondence is suggestive of

a physical mechanism responsible for the change in observed

particulate backscattering. Nevertheless, caution must be

applied in interpreting this coincidence of wind and particu-

late variability because a subsequent change in zonal winds

from westerly to easterly during April, May, and June was

evidently not accompanied by a corresponding decrease in

particulate backscatter. We will continue to observe the

relationship of stratospheric winds and particulate back-

scatter to determine if significant correlations are present

over a long period of time.

On the basis of the lidar observations made during the past

eight months, the conclusion is that large natural variations

in the aerosol can be expected in the stratosphere. For

example, if routine measurements of particulate mass loading

were made between 25 and 30 km, variations by a factor as

large as 10 could be attributed to natural changes--at least

when the concentrations are as low as those currently observed.
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On the basis of the lidar backscatter data analyzed so far,

the existence of a stratospheric aerosol extinction model

much less than the Elterman (1968) model should be considered.

(For a detailed discussion, see Appendix). This conclusion

may have important implications in the development of strato-

spheric radiative transfer models.

The lidar observational program will continue in order to provide

additional information on the presence, height, and variability of

aerosol scattering layers in the natural stratosphere. Continuing

improvements in our analysis procedures will accompany this observational

program to ensure that correct inferences as to stratospheric aerosol

variability are made. The Appendix presents a review of possible pit-

falls in data analysis that become important when stratospheric aerosol

content attains its current low levels and when the vertical extent of

observations is large.
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II INSTRUMENTATION

Table 1 gives the parameters of the lidar system used in the obser-

vational program. The ruby laser system has an energy output of 1 to 2

J/pulse, at the wavelength N 6900 A and a pulse duration of < 30 ns

(pulse length < 4.5 m); it is Q-switched and can transmit single pulses

at a rate of 1 pulse every 2 to 3 s. The.dye laser system has an energy

output of 100 to 150 mJ/pulse at the wavelength of - 5890 A and a pulse

duration of 300 ns (pulse length 45 m); it can transmit single pulses at

a rate of 1 pulse every 4 s. The receiver consists of a 16 in. Cassegrain

telescope. Additional details on the equipment and the signal recording

technique were given in a previous report [Viezee et al., 1973a].* Ruby

lidars of the type used in the observational program are used for upper

atmospheric observations by several research groups within the United

States and abroad.

All references are listed at the end of this report.
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Table 1

LIDAR SYSTEM PARAMETERS

Equipment Parameters

Ruby transmitter

Wavelength 6943 A (ruby)

Energy/pulse 1-2 Joules

Pulse duration < 30 ns (q-switched)

Pulse frequency 0.5 Hz (1 pulse every 2 seconds)

Beam diameter 6 inches (expanded)

Beam divergence 0.5 mrad (full angle)

Dye transmitter

Wavelength 5890 A

Energy/pulse 100-150 mJ

Pulse duration 300 ns

Pulse frequency 0.25 Hz (1 pulse every 4 seconds)

Beam diameter 5 inches

Beam divergence 0.5 mrad (full angle)

Receiver

Diameter 16 inch (Cassegrain)

Unobscured area 1070 cm 2

Acceptance cone 2 mrad (full angle)

Filter bandwidth 10 N

Filter transmission 50%

Separation from laser 7 m

Beam overlap height > 8 km
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III DATA ANALYSIS AND INTERPRETATION

A. Method of Analysis

The lidar backscatter data for a single observation period are

obtained by integrating the return signals from up to 1000 single-pulse

transmissions. This signal integration takes approximately 1 hour,

covering the height region from 10 to 30 km. The returns are integrated

to reduce the sampling error in any range bin to <2 percent. Thus, the

measured backscatter signals are determined with a high degree of ac-

curacy.

Figure 1 shows the three principal steps in the analysis of the

recorded backscatter data. The first step [Figure 1(a)] consists of

matching the measured (range-corrected) vertical profile of lidar back-

scatter signals (indicated by the solid curve) with a computed vertical

profile of molecular backscatter (indicated by the dashed curve). The

measured profile of backscatter data has an error of only 1 to 2 percent

and a height resolution of 250 m up to 25 km and 300 to 500 m above

25 km. The profile of molecular (Rayleigh) backscatter is computed by

using an assumed vertical profile of atmospheric attenuation [Elterman,

1968], and a measured vertical distribution of molecular number density

corresponding to the Oakland radiosonde data nearest in time to the

lidar observation period. (Oakland is approximately 20 miles north of

Menlo Park.) The matching of the two profiles clearly shows a large

bulge in the measured profile near 20 km, and it must be attributed to

a significant contribution to the atmospheric backscatter from particulate

matter.
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FIGURE 1 DATA SAMPLE SHOWING THE THREE PRINCIPAL STEPS IN THE ANALYSIS
OF THE RECORDED LIDAR BACKSCATTER MEASUREMENTS



As described in the Appendix and also in a previous report [Viezee,

et al., 1973a], the "matching" method of analysis entails multiplying

the computed molecular backscatter profile by a constant that cannot be

determined before the lidar measurement is made. (The constant is

unknown both because the lidar is uncalibrated and also because the

transmission of laser energy through low-level haze and cirrus is not

accurately known.) In the analysis of each lidar observation, this

constant is determined in the following.manner. First, an arbitrary

value for the constant is assumed; the resulting molecular backscatter

profile is/used to compute a profile of the scattering ratio, R(z),

equal to the measured lidar return divided by the computed molecular

return at altitude z. Then, an average scattering ratio is computed

for all those data points with a scattering ratio that is within error

bars (± one standard deviation) of the minimum ratio. The constant is

then adjusted so that this "average minimum ratio" becomes equal to one,

and all individual scattering ratios are recomputed by using the adjusted

value of the constant. This procedure effectively matches the computed

molecular backscatter profile to the measured lidar backscatter profile

in the region of minimum scattering ratio, and it is equivalent to

assuming that the particulate content of that region is nil or negligible.

As is shown in the Appendix and in a previous report [Viezee, et al.,

1973a] if such a "molecular layer" indeed exists in the region of lidar

analysis and if the molecular backscatter profile is accurately computed,

the resulting scattering ratios then satisfy

f (z)

R(z) = 1 + (1)
f (z)
M

where fA(z) is the particulate or aerosol backscattering coefficient,

and fM(z) is the molecular (Rayleigh) backscattering coefficient.
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The resulting vertical variation of the scattering ratio is shown

in Figure l(b). The presence of an aerosol layer near 20 km shows very

clearly in these data. As discussed in the First Quarterly Report

[Viezee, et al., 1973a], the scattering ratio measurement is subject

to errors arising principally from three sources:

* Statistical variation in the measured lidar return

* Errors in the measured radiosonde density profile

* Differences between the actual stratospheric transmission

and that assumed [Elterman, 1968] in computing the

molecular return.

The latter two sources of error are also discussed in more detail in

the Appendix of this report. The total error (± one standard deviation)

in the scattering ratio amounts to approximately 2 percent, and is given

by the error bars shown in Figure l(b), plotted at every fifth data

point. The scattering-ratio data of Figure l(b) can be interpreted as

follows: Around 25 km, the data points are distributed within error

bars of unit scattering ratio, which means that the aerosol backscattering

coefficient is at most 2 percent of the molecular backscattering co-

efficient. In other words, the aerosol content in this layer is negligible

within the uncertainty of our measurement. At the peak of the aerosol

layer near 20 km, the contribution of particulate matter of atmospheric

backscatter is 10 percent of the contribution from gas molecules. This

contribution decreases to 5 percent at 14 km and decreases further to

less than 2 percent near 12 km. The 12-km level coincides with the

level of the tropopause.

The third step in the data analysis is with the use of Eq. (1) to

express the scattering ratio in terms of the aerosol backscattering

coefficient fA(z). The resulting vertical profile of this parameter is

shown in Figure 1(c). At the height of the layers of maximum aerosol

content, values of the aerosol backscattering coefficient range from
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-9
2 to 5 x 10 per meter per steradian. When a Junge-type size distri-

bution in the range from 0.1- to 3.0- 4m particle radius is assumed,
3

these values correspond to 0.5 to 1.0 particle per cm . The aerosol

content above 25 km appears insignificant in this observation. The

dashed line represents constant mixing ratio and is drawn at 1 percent

of the molecular backscattering coefficient. It can be seen that in

this data sample the particulates are distributed in a layered structure

rather than according to constant mixing ratio.

Determination of the aerosol backscattering coefficient is as far

as we can carry the analysis of independent lidar observations. Since

the backscattering coefficient is an integral quantity that depends on

the number density, the size distribution, and the optical properties

of the particles, the lidar backscatter data alone obviously cannot

provide unambiguous information on refractive index, size, or number

concentration. The objective of our program, however, is not to provide

such information but rather to give data on the space and time distri-

bution of the aerosol. This information is obtained with a high degree

of accuracy from the lidar observations as shown in Figures 2 and 3.

B. Summary of Data

Figure 2 shows vertical profiles of the scattering ratio R(z) for

all 16 successful observations made in our program from October 1972

through June 1973. The presence of a layer of particulate matter near

20 km is clearly shown. However, differences in the vertical structure

of this aerosol scattering layer are evident. For example, for 19

January, this layer is rather narrow with a secondary maximum near

14 km; while for 27 March and 2 April, the layer is much broader, and

the particulates appear to be more uniformly distributed around the

20-km level. Also, for 2 April, 15 May, and 12 June, a significant

12
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increase can be seen in the aerosol backscatter at 25 km and above. The

aerosol scattering layer near 20 km is associated with peak values of

the scattering ratio of 1.10 to 1.15; this means that the aerosol back-

scattering coefficient is only 10 to 15 percent of the molecular back-

scattering coefficient. This situation is very different from that

during the mid-1960s, when the Agung volcanic matter was still present

in the stratosphere. For example, Grams and Fiocco (1967) made lidar

observations in 1964 and 1965 and found typical values of the scattering

ratio in the range 1.5 and 2.0; this means that during those years, the

particulate contribution to atmospheric backscattering was 50 to 100

percent of the molecular contribution. The data of Figure 2 show a

particulate contribution that is only 10 to 15 percent of the molecular

contribution.

Figure 3 shows the corresponding vertical profiles of the aerosol

backscattering coefficient. These profiles again show the difference

in the aerosol distribution between the various observation periods.

Significant aerosol variations appear at 25 km and above. Also, the

lidar data sometimes suggest a layered structure (for example, those

for 19 January); while at other times, the vertical profile resembles

constant mixing ratio (for example, that for 2 April). In all cases,

the level of the tropopause (12 to 14 km) appears to be sink region.

The observed variations in aerosol backscattering coefficient are dis-

cussed further in connection with stratospheric wind data in Section III-E

below.

C. Sequential Ruby and Dye Lidar Observations

On 15 May 1973, observations were made by using first the ruby laser

(X = 0.6943 pm) transmitter of the lidar system and immediately there-

after by using the dye laser (X = 0.5890 4m) transmitter. The results

17



are shown in Figure 4. As can be seen from Figure 4(a), the observations

at both wavelengths reveal a scattering ratio profile of similar shape;

however, the values at the shorter dye wavelength fall consistently
-4

below those at the ruby wavelength. This is in accord with the -4

dependence of molecular (Rayleigh) backscattering and the expected weaker

X-l dependence of particulate backscattering [typically observed values

are u = 0 - 2; for example Elterman's (1968) model uses a 0.9]. Thus,

at the shorter dye wayelength, molecular scattering may be expected to

be relatively more important than particulate scattering when compared

with the relative amounts of scattering at the longer ruby wavelength.

This expected behavior is indeed observed in Figure 4(a) and confirms

the fact that the enhanced backscattering in the 18 to 25-km region

does not result from an anomalously dense molecular layer (which would

give scattering ratios independent of wavelength) but must be of par-

ticulate origin. In addition, the fact that the scattering ratio pro-

files have the same shape tends to validate the radiosonde data used in

the computation of the scattering ratios.

The wavelength dependence of the particulate backscattering coeffi-

cient may be simply related to the particle size distribution n(r) (r is

particle radius) provided that the size distribution is of the form

-(v+1)
n(r) = K r (2)1

throughout the optically significant size range. If this is the case,

it can easily be shown [see, e.g., Junge (1963), p. 142] that

f = K2 X (3)
A 2
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and

= v - 2 . (4)

In these equations, K and K are constants proportional to the particle
1 2

number concentration, and v is a single parameter giving the dependence

of particle number on radius. As can be seen from Figure 4(b), the

15 May 1973 observation is inadequate to make an accurate determination

of the wavelength exponent Y because the ruby and dye values do not

generally differ from each other by more than the uncertainty of the

respective measurements. Within that uncertainty, however, the wave-

length dependence of fA shown in Figure 4(b) is consistent with values

of a/ = -0.5 to +1.0. These correspond to size distribution exponent

values of v = 1.5 to 3, which are consistent with values observed ex-

perimentally [Junge, et al., 1961 (v - 1.5 to 3)], and also with values

expected on the basis of theoretical considerations [FriedlanderY 1961

(v = 1 to 3)]. These results are somewhat encouraging, but primarily

they tend to emphasize the need for somewhat higher precision in the

acquisition and analysis of stratospheric lidar data if useful wavelength

dependences and size distribution information are to be extracted.

D. Time Variability of Scattering Profiles Within

Nightly Observations

On several occasions, we have compared the scattering profiles

obtained at different times within the same night. The results of two

such comparisons are shown in Figure 5. The case of 4 January 1973

shown in Figure 5(a) is fairly typical in that any differences between

the two profiles are within the uncertainty of the measurement. An

unusual case, however, is that of 15 May 1973, shown in Figure 5(b).

As can be seen, the particulate backscattering appears to have increased
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significantly from the first observation to the second. This conclusion

should be adopted with some caution, however, since the "matching" method

of analysis would produce the same time variation in scattering ratio if

the particulate concentration at 13 to 14 km were nonnegligible in the

early observation and decreased thereafter. The presence of an obvious

band of cirrus at 12.5 kmn, which gave scattering ratio values off the

scale of the figure and was not present on any other night of observations,

may in fact be related to changing particulate backscatter in the 13 to

14-km region.

E. Time Variability of Scattering Profiles and Stratospheric

Winds: October 1972-June 1973

Figure 6 summarizes all the lidar observations made during the

period October 1972 through June 1973. To summarize these data, four

layers of 2.5-km thickness were selected between 20 km (65,000 ft) and

30 km (98,000 ft). For each layer, the mean* value of the aerosol back-

scattering coefficient measured during each observationlperiod is indicated

along with an error bar that includes the sampling error in the measured

lidar signal but not the possible errors resulting from incorrect at-

mospheric density or extinction profiles (see also discussion below and

in the Appendix). When these observed data points were connected by

straight lines, profiles of atmospheric backscatter as a function of

time were obtained; on this basis, the lidar observations can be in-

terpreted in terms of the spatial and temporal variability of the par-

ticulates. In the 20.0 to 22.5-km layer, the lidar data show an increase

-9
in the aerosol backscattering coefficient from 2 x 10 per meter per

Note that this differs from the maximum values plotted in Figure 4 of

the Second Quarterly Report [Viezee et al., 1973bi. The shape of the

resulting curves, however, is very similar.
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steradian in October 1972 to 6 x 10 per meter per steradian in May

and June 1973. If the chemical properties of the aerosols and their

shape and size distribution remained constant in this stratospheric layer,

this increase indicates that the mass loading increased by a factor of 3.

The data profile in the 22.5 to 25.0-km layer shows a similar

slight increase in addition to a short-period decrease in January.

This sudden decrease is based on the data points from three observation

periods. The largest variations in atmospheric backscatter are found

in the 25.0 to 27.5-km layer. For the period from October to December

1972, a definite increase in aerosol backscattering coefficient is

observed. A much larger increase in lidar scattering ratio was observed

at the same time in Japan and has been related to an influx of dust

from the comet Giacobini-Zinner [Hirono et al., (1972)]. However, as

discussed below, other mechanisms may be responsible for the increase

that we have observed. For the period from December 1972 to mid-January

1973,. the aerosol backscattering coefficient in the 25.0 to 27.5-km layer

shows a decrease by a factor of 10, followed by a tenfold increase from

mid-January to April. The observed large variability could imply that

the particle number density varied by a factor of 10; it could also

imply that large particles were injected into this layer from mid-January

to May or that the nature of the particles changed significantly. The

layers at 22.5 to 25.0-km and 27.5 to 30.0-km show a similar large time-

variability in aerosol backscatter.

The lidar observations alone cannot explain the origin of the ob-

served variation, but comparisons with other atmospheric data frequently

can be instructive in this regard. Accordingly, we have inspected the

data on stratospheric winds measured in the vicinity of Pt. Mugu,

California during the period of the lidar observations. Vertically

averaged values for layers corresponding to those of the lidar data
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were computed for both zonal and meridional components of the winds.

The zonal layer averages obtained in this manner are shown in Figure 6,

plotted along with the aerosol backscattering coefficient. As can be

seen, primarily for the layers 22.5 to 25.0 km and 25.0 to 27.5 km, the

December-January decrease in particulate backscatter coincides with a

shift in zonal wind from a westerly to an easterly direction (this wind

shift was associated with a sudden stratospheric warming observed at

that time). Moreover, the subsequent shift in winds from easterly to

westerly during February, March, and April was accompanied by increasing

particulate backscatter. This comparison is suggestive of a physical

relationship between stratospheric winds and the nature or concentration

of aerosol content. A detailed interpretation is not fully justified

at the present time, however, because the data comparison is limited in

space and time. For example, Pt. Mugu is more than 200 miles SSE of

Menlo Park and the wind measurements are obtained during daylight while

the lidar data are collected at nighttime. In addition, the wind shift

from westerly to easterly in April-June was not accompanied by a cor-

responding decrease in particulate backscatter. As shown in the Appendix,

however, use of a more realistic atmospheric extinction profile in our

analysis may reduce the June backscatter values (which alone are based

on a normalization at 10 km) below the error bars of Figure 6, while

the other values remain relatively unchanged. We will continue to

observe the relationship of winds and particulate backscattering coeffi-

cients over a more extended period of time and to assess the effect on

our data of assuming a reduced atmospheric extinction profile. The

results of these investigations will be presented in forthcoming reports.
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IV CONCLUSIONS

The data presented in this report demonstrate that large natural

variations can be expected in the stratospheric aerosol. Most important

to CIAP is that the lidar observations suggest the presence of natural

variations in particulate mass loading by a factor as large as 10 between

25 and 30 km. Other conclusions that may be abstracted from the data

have been summarized in Section I.

The validity of the conclusions is supported by a recent experiment

that consisted of a comparison between lidar data obtained by the lidar

research group at NASA, Langley, and simultaneous balloon data obtained

by the University of Wyoming [Dynatrend, 1973]. A similar comparison

has also been reported by Fernald et al. (1973).

If lidar observations of stratospheric aerosol scattering layers

were made by a network of laser-radar stations, such a lidar network

could effectively serve as a routine monitoring network when operated

in conjunction with periodic "calibration" input on refractive index

and size distribution from aircraft/balloon data.
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Appendix

IMPORTANCE OF ASSUMED ATMOSPHERIC DENSITY AND

EXTINCTION PROFILES IN THE ANALYSIS

OF STRATOSPHERIC LIDAR DATA

1. Introduction

A fundamental, derived quantity in the analysis of stratospheric

lidar data is the "scattering ratio," R(z), defined by

f (z) + f (z)
M A

R(z) = A (A.1)
f ( z )

where fA(z) is the aerosol or particulate backscattering coefficient,

and fM(z) is the molecular backscattering coefficient, both at altitude

z. In practice, the scattering ratio is obtained by means of the equation

S(z)
R(z) - (A.2)

M(z)

in which S(z) is the measured range-corrected lidar backscatter signal

and M(z) is the range-corrected lidar signal that would result from a

purely molecular layer at altitude z, calculated as

M(z) = k' f (z) q (z) (A.3)
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In this equation, k' is a lidar system calibration constant and q (z)

is the two-way transmission of a laser signal between the lidar and

altitude z.* The measured range-corrected lidar signal is given by

S(z) = k'[f (z) + f (z)]q2  (A.4)

Thus, taking the ratio of Eq. (A.4) to Eq. (A.3), as dictated by Eq. (A.2),

properly gives the scattering ratio R(z) defined by Eq. (A.1), provided

the quantities required in Eq. (A.3) tocompute M(z) are accurately

known.

Because of the general difficulty of calibrating lidar systems,

the calibration constant k' is usually unknown; therefore, the standard

procedure for analyzing stratospheric lidar backscatter data in the

altitude region of interest is to reference them to a molecular at-

mosphere. Typically this is accomplished by adjusting the value of k'

so that the statistically significant minimum ratio R(z ) is equal to
0

unity. This procedure has been used by many investigators [Grams, 1966;

Grams and Fiocco, 1967; Fox, et al., 1973; Melfi, et al., 1973; Viezee,

et al., 1973a], and is equivalent to assuming that the atmosphere at

altitude z is essentially molecular, with negligible particulate con-

tent (cf. Eq. A.1). Provided such a molecular layer actually exists in

the region of lidar analysis, this procedure--in addition to eliminating

the need for an accurate calibration--has the additional advantage of

permitting analysis of lidar backscatter data even when cirrus clouds

or low-level layers of atmospheric pollution introduce a large and

unknown extinction below the altitude region of analysis. The

Derivation of these equations is given in detail by Viezee et al. (1973a).
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possibility of nonnegligible dust content throughout the region of lidar

analysis of course provides a source of potential error that workers in

this field have long been aware of.

The purpose of this Appendix is to examine the potential errors

in the other two quantities required in the computation of the expected

molecular return (cf. Eq. A.3); namely, the molecular backscattering

2
coefficient f (z) and the two-way transmission q (z). The magnitude of

possible errors in these quantities is such that the resulting errors

in inferred stratospheric particulate content are relatively small when

particulate content is high, as was the case, for example. after the

Agung volcano eruption in 1963, when the first stratospheric lidar

observations were made [Fiocco and Grams 1964; Grams, 1966; Grams and

Fiocco 1967]. At that time, typically observed maximum scattering ratios

were in the neighborhood of R = 2.0, indicating a particulate back-

scattering coefficient approximately equal to the molecular backscattering

coefficient (cf. Eq. A.1). Since the time of these first observations,

however, a general decrease in stratospheric aerosol content has been

observed [Elterman, 1973; Fox et al., 1973]. Accordingly, typical

maximum values of lidar scattering ratios measured in the past few years

have been in the range R = 1.10 - 1.15 [Fox,. et al., 1973; Melfi, et al.,

1973; Viezee, et al., 1973a,b]. Thus, the size of the aerosol back-

scattering coefficient, given by

fA (z) = [R(z) - 1]f (z) , (A.5)

is now only about 10-15 percent of the molecular backscattering coeffi-

cient, indicating a decrease by about an order of magnitude since the

peak concentrations of 1964-1965. As will be shown below, when the

scattering ratio is of its current size, probable errors in the assumed
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molecular backscattering and two-way atmospheric transmission profiles

can often result in significant errors in the computed particulate

backscattering coefficient.

2. Molecular Backscattering Profile

The molecular backscattering coefficient fM(z) required in Eq. (A.3)

is given by

f (z) = C N (z) , (A.6)
M r M

where C is the Rayleigh backscattering cross section (dimensions:
r

area/unit solid angle) for a single air molecule, and N (z) is the

molecular number density (number/unit volume) at altitude z. (The

molecular backscattering coefficient thus has dimensions of inverse

length/unit solid angle.) The atmospheric Rayleigh backscattering

cross section C is known to high accuracy and is constant over the
r

region of stratospheric lidar analysis [Elterman, 1968; Fox, et al., 1973].

Thus,. errors in N M(z) are the only source of errors in f M(z).

In many previous studies, values from standard atmospheres [see,

e.g., U.S. Standard Atmosphere Supplements, 19661 appropriate to the

season and location of the lidar observation have been used to compute

N M(z). As is known, however, at any given date and location the actual

stratospheric density profile may differ from the standard by several

percent or more. When the scattering ratio is close to unity, these

differences from the standard can result in significant changes in

inferred particulate backscattering coefficient.
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These changes are illustrated in Figure A-1 for two cases of lidar

observations made at Menlo Park, California. In each case, scattering

ratios were computed by using molecular density profiles computed from

two different sources:

* The Midlatitude Spring/Fall U.S. Standard Atmosphere [U.S.
Standard Atmosphere Supplements, 1966].

* The Oakland, California radiosonde ascent made on the night

of the lidar observation. [Oakland is approximately 20

miles north of Menlo Park.]

The Oakland radiosonde density profiles are presented in Figure A-1

(a, c) as percentage deviations from the U.S. standard density. The

19-20 January 1973 case is fairly typical of wintertime density soundings

used in the present study. As can be seen from Figure A-l(b), use of

the radiosonde density profile introduces small but significant differences

in the shape of the scattering ratio profile and, therefore, in the in-

ferred structure of stratospheric aerosol layers as compared with that

obtained by using the standard density profile. In regions where the

scattering ratio is close to unity, the aerosol backscattering coeffi-

cient (cf. Eq. A.5) is changed by a factor of two or more.

The second case, that of 15-16 May 1973, illustrates an observation

in which the deviation of the radiosonde density from the standard was

quite large, amounting to nearly 12 percent in the vicinity of 13 km.

To ascertain that this observation was not the result of an isolated

radiosonde malfunction, radiosonde profiles from ascents made 24 and 12

hours before and 12 and 24 hours after the 16 May 0400 (local standard

time) ascent were inspected. This inspection revealed a smooth buildup

and decline of the dense layer at 13 km, with the density deviation

at one time exceeding 12 percent. Although the magnitude of the density

deviation observed on 16 May 0400 is unusually large, the occurrence of

the dense, cold layer near 13 km is fairly typical of our late spring
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and early summer observations, and indicates a rise of the tropopause

at Oakland, California above the level of the standard. As expected,

use of this radiosonde molecular density profile results in very sig-

nificant changes in the shape of the scattering ratio profile, as shown

in Figure A-l(d).

Errors in the measured radiosonde density profile N (z) will of

course produce corresponding errors in the scattering ratio R(z), but

not if the radiosonde errors are systematic so that all number densities

in the region of lidar analysis are affected by the same relative amount.

This is true because of the method (discussed above) of "matching" the

molecular return to the lidar return at an altitude within the range

of observations. Errors in R(z) will result from errors in N M(z) of

one point within the region of analysis with respect to another; these

errors are caused, for example, by random measurement error or instrumental

drift during the radiosonde traversal of the layer being analyzed. We

have estimated the magnitude of these possible errors [Viezee, et al.,

1973a] at 1 percent, and they are included in the error bars on the

scattering ratios of Figure A-1.

The importance of using a local density measurement, rather than

a density standard, in the analysis of stratospheric lidar data has

been noted by several other investigators. For example, Melfi, et al.

(1973) used temperature and pressure sensors on a balloon flown con-

currently with their lidar observations to obtain a density profile.

They compared the lidar-derived aerosol structure with that revealed by

simultaneous in situ measurements made with a photoelectric particle

counter on the same balloon. Agreement between the two measurements

improved significantly when the measured density profile was used in

the lidar analysis instead of a standard. In connection with airborne

lidar measurements, Schuster, et al. (1973) have suggested using a
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computer program that employs nearby radiosonde data and isentropic

analysis to generate a molecular density field above the lidar flight

path. The above discussion and examples are therefore presented mainly

for the sake of concreteness and to illustrate the possible magnitude

of errors that may be introduced by relying on a standard atmospheric

density profile.

3. Two-Way Transmission Profile

Use of so called "standard" data to compute the two-way transmission

q2(z) will introduce errors in R(z) in a manner which is completely

analogous to that described in the previous section (cf. Eq. A.3). If

the actual transmission differs from the standard by more than one or

two percent, these errors will be significant, in the case of the small

scattering ratios currently being observed. Therefore, these transmission

errors are investigated in more detail in this section, and several ex-

amples of their importance are presented. To our knowledge, these errors

have not been taken into account by other researchers, but they have

proved to be significant in our current studies.

2
The two-way transmission q (z) required in Eq. (A.3) is given by

q2(z) = exp [-2 T(zL,z)] , (A.7)

where zL is the altitude of the lidar system and T(zL,z) is the optical

depth between zL and z along the lidar beam path. On the assumption

that the lidar is pointing vertically upward, the optical depth.is given

by

z

T(zL, Z) = f (z') dz' , (A.8)

z
L

A-9



in which B(z) is the atmospheric extinction coefficient per unit length.

For a ground based lidar at sea level, zL = 0.

Because of the "matching" method of analysis described in Section A.1,

it is clear that changes in the assumed extinction coefficient outside of

the region of lidar analysis cannot affect the scattering ratio R(z).

For our purposes, it will therefore be convenient to break the optical

depth T(z L,z) into two components,

z

T(zLzb) = b (z') dz' (A.9)

z
ZL

and

z

T(Z Z) = 5 (z') dz' (A.10)

z
b

so that

T(z ,z) = T(z Lz ) + T(z ,z) z z z (A.11)

where zb is the lower boundary of the region of lidar analysis. We

thus have

2 2 2
q (z) = Q q(z) (A.12)
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in which

Q = exp[-2 T(zL,Zb)] (A.13)

and

2

qb(z) = exp [-2 T(z ,z)] . (A.14)

In any given analysis using the "matching" method, since Q2 is inde-

pendent of z, changes in Q2 will be absorbed into the calibration con-

stant k ' and thus are not of interest in the present discussion. We

will therefore be concerned only with q (z)--i.e., with the two-way

transmission between the lower bound of the region of lidar analysis

and some higher altitude z.

For the laser wavelengths of most stratospheric lidar systems, which

are chosen to avoid the sharp absorption bands of water vapor and other

gases, the extinction coefficient is the sum of three components,

O(z) = 0 (z) + 3 (z) + p (z) , (A.15)
r 3 p

arising from Rayleigh scattering by molecules (0 ), absorption by ozone
r

(U3), and Mie scattering (including absorption) by particulate matter

(U ). Analogously, the optical depth may be broken into three cor-
p

responding components;

z

Ti (Zb"z) = i(z, ) dz i = r,3,p (A.16)

z
b
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In discussing the relative contributions of and possible variations

in each of these components, we now assume for concreteness that z --

the lower bound of the region of lidar analysis--is at 10 km and that

the upper bound is at 30 km. We will also assume a wavelength X equal

to 0.7 tm, or essentially equal to the ruby laser wavelength (X = 0.6943 Gm).

With these assumptions, the Rayleigh and ozone optical depths over the

region of lidar analysis may be readily obtained by using a standard

atmosphere and a typical ozone density profile, as was done by Elterman

(1968). His comprehensive tabulation shows that

T (10 km, 30 km) = 0.010 ( = 0.7 Pm), (A.17)

and

T3(10 km, 30 km) = 0.006 (X = 0.7 pm), (A.18)

where the U.S. Standard Atmosphere (1962) for molecular densities and

a compilation of several observations for the ozone profile have been

assumed. The corresponding two-way transmissions through the 10 to

30-km region are thus

2 -0.020
q (30) = e = 0.980 (molecular scattering) (A.19)
10, r

2 -0.012
q ,3(30) = e = 0.988 (ozone absorption), (A.20)

with transmissions to altitudes below 30 km lying even closer to unity.

By varying the model optical depths [Eqs. (A.17) and (A.18)] one can

easily show that deviations from the assumed standard molecular at-

mosphere of 50 percent or more and variations from the assumed ozone
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distribution of 160 percent or more are required to change the two-way

Rayleigh and ozone transmissions by as much as 1 percent. Clearly, then,

such variability may be ruled out as a source of significant error in

the computed molecular lidar return and hence in the scattering ratio.

The third component of the stratospheric optical depth, T (z ,z),
p b

(the component due to particulate extinction) is, however, a possible

source of significant error. For example, the 1968 Elterman compilation

gives

T (10 km, 30 km) = 0.027 ( = 0.7 pmn) (A.21)

for the particulate optical depth of the region that we are considering.

This is 2.7 times as large as the Rayleigh optical depth and 4.5 times

as large as the ozone optical depth. The resulting two-way transmission

through the 10 to 30 km region is

2 -0.054
q (30) = e = 0.947 , (A.22)
10, p

and indicates that use of this particulate extinction model in the

analysis of lidar returns will increase the scattering ratio at 30 km

by 5.5% ( - 1) with respect to the scattering ratio at 10 km.
.947

If, instead, the extinction in the 10 to 30-km layer were assumed to

arise entirely from Rayleigh scattering and ozone absorption (i.e., no

particulate extinction), this 5.5 percent increase in the scattering

ratio at 30 km would not occur. Such a change of 5.5 percent is cer-

tainly significant in relation to the accuracy of our current lidar

measurements and the small peak scattering ratios (R = 1.10-1.20) cur-

rently being observed. Moreover, since the stratospheric particulate

content is known to be highly variable [Elterman, 1968, pp. 8-19;
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Fox, et al., 1973; and the text of this report], changes from the assumed

stratospheric particulate optical depth by an order of magnitude or more

should be considered possible. In fact, as discussed in the following

section, a stratospheric particulate extinction profile that is much

less than the 1968 Elterman model profile may provide a more accurate

representation of present stratospheric aerosol conditions.

The effect of the above considerations is demonstrated by the use

of two actual lidar observations in Figure A-2. Figure A-2(a) shows

the profile of two-way particulate transmission, q (z), obtained

assuming the 1968 Elterman particulate extinction model and a wavelength

of 0.70 pm. As can be seen by inspection of Eqs. (A.2) and (A.3), this

profile is divided into the measured lidar backscattering profile S(z)

in computing the scattering ratio R(z). The resulting effect on the

scattering ratio for our lidar observations made on 22 January 1973 and

18 June 1973 is shown in Figure A-2(b,c). Scattering ratio profiles

obtained from the same lidar data but assuming no particulate extinction

in the 10 to 30-km region are also shown for comparison.

The differences between the two profiles obtained on 22 January

[Figure A-2(b)], where the lidar returns are analyzed only above 15 km,

are relatively small. This result could be predicted by inspection of

Figure A-2(a) which shows that the 1968 Elterman particulate transmission

over the 15 to 30-km region varies by 3.1 percent or less. Since the

2.5 percent change in particulate transmission over the 10 to 15-km

region lies below the region of lidar analysis for this case, it is

absorbed into the calibration constant in the matching procedure,

independent of the extinction profile that is assumed. Similarly, a

lidar profile analyzed only above 20 km would have its scattering ratios

affected by only 1 percent in changing from a "no particulate" extinction

to the 1968 Elterman model. This, in fact, was the reason for our early
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estimate of 1 percent for the one-standard-deviation uncertainty in

computed scattering ratios caused by uncertain atmospheric extinction,

as explained in the First Quarterly Report [Viezee et al., 1973a]. Half

of the lidar observations presented in that report did not extend below

20 km, and only one (19 January 1973) extended as low as 13 km. The

error bars shown in Figure A-2 were also computed by using the 1 percent

extinction-related uncertainty, so that they may be compared with the

differences actually shown.

For the case of 18 June 1973, as shown in Figure A-2(c), the choice

of an extinction profile becomes relatively more important. This is

because the lidar return is analyzed over a large vertical range that

extends down to 10 km. In this region, the 1968 Elterman extinction is

changing quite rapidly so that adopting that model rather than a "no

particulate" extinction model increases the scattering ratio at 30 km

by 5.5 percent with respect to the ratio at 10 km. The "matching"

method of analysis of course introduces a slight renormalization so

that the mean of all ratios that are statistically equivalent to the

minimum ratio remains equal to 1. As can be seen, for lidar returns

covering the range 10 to 30. km, the assumption of a 1 percent error

in the computed scattering ratio arising from extinction uncertainty

is inadequate if both of the following two possibilities occur:

* The 1968 Elterman model is assumed

* It is considered likely that much smaller particulate ex-

tinction may, in fact, occur.

This question is addressed in more detail in the following section.
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4. Choice of an Appropriate Particulate Extinction Model

The particulate extinction model of Elterman (1968) has been used

in all our previous analysis of lidar data and also in that of Melfi et

al. (1973). On the other hand, Fox et al. (1973) have chosen to assume

a model of no particulate extinction in their data analysis. Other

researchers in this field afy have chosen still other models. In view

of the possible effects the choice of an extinction model may have (as

illustrated above) on lidar-inferred particulate backscatter, it is

important to evaluate the appropriateness of various particulate extinc-

tion models.

The model of Elterman (1968) is based on searchlight measurements

made in 1964 and 1965. This period coincides with the early stratospheric

lidar observations of Fiocco and Grams (1964) [see also Fiocco and Grams

(1966), Grams (1966), and Grams and Fiocco (1967)] when peak scattering

ratios in the neighborhood of 2.0 were observed. Since that time, with

the passage of the Agung volcanic aerosol, commonly observed peak

scattering ratios have been in the range 1.10.to 1.20. The lidar data

thus indicate a decrease in particulate backscatter in the stratosphere

by as much as a factor of 10. Thus, the extinction values of the Elterman

(1968) model are likely to be too large by a similar factor. More recent

searchlight measurements by Elterman et al. (1973) made in 1970 show peak

turbidity values that are 30 percent lower than the 1964-1965 values, but

the 1970 peak is broader than the 1964-1965 peak, so that particulate

transmission for the more recent measurements does not differ significantly

from the Elterman (1968) transmission (both transmissions are plotted in

Figure A.2(a) for comparison). Nevertheless, an earlier extinction model

by Elterman (1964) showed stratospheric extinction coefficients an order

of magnitude or more lower than those of the Elterman (1968) model. The

1970 searchlight measurements do not show a return to this pre-Agung

condition although such a return is implied by the lidar and other measure-

ments.
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The mutual consistency of the Elterman (1968) extinction model and

the current lidar measurements may be further investigated by considering

the particulate backscatter-to-extinction ratio implied by the two measure-

ments. Following Waggoner (1971) and Waggoner et al. (1972), we define

this ratio as:

f
A

A 4' - (A.21)

p

We also require a definition of the turbidity y, given by Elterman (1968)

as:

Y p(A.22)

r

and we will use the fact that for Rayleigh scattering of unpolarized light,

1.5
f =- 4. . (A.23)

M 4n M

These three equations may be combined with Eq. (A.1) to obtain the

relation

R-1
A = 1.5 -- (A.24)

Y

that conveniently expresses the particulate backscatter-to-extinction

ratio in terms of the fundamental quantities measured in a lidar and a

searchlight experiment.
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The Elterman (1968) attenuation model shows a peak turbidity of

y(Q = 0.7 Pm; z = 19 km) = 4.67 (A.25)

Generally, our observations, which are consistent with the recent ones

of Melfi et al. (1963) and Fox et al. (1973), have shown peak scattering

ratios of

R(X = 0.6943 4m; z m 22 km) a 1.13 (A.26)

Hence, using Eq. (A.24), we have

A (current lidar/1968 Elterman) = 0.04 (A.27)

This value may be compared with theoretical values computed under

the assumption that the scatterers are nonabsorbing spheres with index

of refraction m = 1.5 and a wide range of size distributions. The result

of those computations is

A = 0.4 - 0.6 [McCormick et al. (1968)] (A.28)
th

In addition, experimental measurements on a wide range of tropospheric

aerosols have been made, yielding

0.15 0.02 [Waggoner et al. (1972)] (A.29)

0.32 [Reagan and Herman (1972)] (A.30)

exp 0.39 [Davis (1971)] (A.31)

0.3 0.5 [Hamilton (1969)] (A.32)
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The generally smaller values of Aexp as compared with Ath probably result

from the fact that real tropospheric aerosols are somewhat aspherical or

weakly absorbing or both [see e.g., Holland and Gagne (1970), Harrison

et al. (1972), and Grams et al. (1973)].

Comparison of the result in Eq. (A.27) with the theoretical result of

Eq. (A.28) shows that, if the stratospheric aerosol particles are non-

absorbing spheres (e.g., sulfuric acid droplets) with index of refraction

near m = 1.50 and a reasonable size distribution, then the Elterman (1968)

values for particulate extinction are too high by a factor of at least 10

[and the Elterman (1973) values too high by a factor of at least 7]. If,

on the other hand, the stratospheric aerosol particles have a backscatter-

to-extinction ratio similar to that for tropospheric aerosols [cf Eqs.

(A.29) through (A.32)], then the Elterman (1968) Darticulate extinction

values are too high by a factor of 3.7 to 10 [and the Elterman (1973)

values too high by a factor of 2.6 to 7]. In fact, the Elterman (1968)

extinction values can be consistent with current lidar backscattering

measurements only if any of the following three possibilities occur:

(1) The stratospheric particles are extremely aspherical, such as

silica plates used by Holland and Gagne (1970).

(2) The scattering particles have an imaginary index of refraction

m of approximately 0.02 or larger (cf. Grams et al., 1973).
I

(3) Some combination of (1) and (2) applies, such as predominance

of moderately aspherical particles (macrocrystals?) that have

m I 0.005 or larger (cf. Harrison, et al.(1972).

A recent study by Friend et al. (1973), which included laboratory

experiments and.a thorough survey of the literature, concluded that the

composition of the stratospheric aerosol is predominantly ammonium sulfate

and sulfuric acid. The sulfuric acid likely occurs in solution with water

and--if the formation scheme proposed by Friend et al. (1973) is correct--

would tend to be the dominant component shortly after volcanic eruptions,

with ammonium sulfate dominating the "normal" stratospheric aerosol.
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Moreover, Friend (1966) and Mossop (1963, 1965) noted that electron

microscope examinations of collected particles often showed evidence

that the particles were associated with a liquid phase. Finally, another

recent literature review and experimental program conducted by Neumann

(1973) has shown that neither sulfuric acid (including sulfuric acid-

water vapor solutions) nor ammonium sulfate is absorptive in the visible

wavelength region used by stratospheric lidars. It thus appears quite

doubtful that any of possibilities (1), (2), and (3) listed above

actually occurs. However, crystals of ammonium sulfate with a nonzero

imaginary refractive index too small to be measured by conventional tech-

niques [possibility (3)] cannot yet be ruled out definitively.

Despite this final possibility, the bulk of the above evidence

indicates that the stratospheric particulate extinction values of the

Elterman (1968) model are too large to be consistent with current lidar

measurements showing peak scattering ratios in the range R = 1.10 to

1.20. Moreover, these extinction values are probably high by a factor

of 3 or more. It thus appears that use of this model in the reduction

of lidar data with peak scattering ratios of less than R = 1.5 is not

appropriate, and in cases where the range of lidar analysis extends

below about 18 km and covers a range of 8 km or more [cf Figure A.2(a)],

significant errors can be introduced by its use. At the present time, a

"no particulate extinction" model as assumed by Fox et al. (1973) and

used in Figure A.2(b),(c) is probably quite appropriate. A circumspect

analysis procedure should, however, include a check that introduces a

nonzero particulate extinction when scattering ratios of larger than

about 1.3 are observed over a significant altitude region. Finally,

these considerations should be taken into account in an error analysis

when the probable contribution of extinction errors to computed scattering

ratios and aerosol backscattering coefficients is being estimated.
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